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Abstract
The derivatives to any order of the Gaussian hypergeometric function
2F1 (a, b, c; z) with respect to the parameters a, b and c are expressed in
terms of generalizations of multivariable Kampé de Fériet functions. Several
properties are presented. In an application to the two-body Coulomb scattering
problem, the usefulness of these derivatives is illustrated with the study of the
charge dependence of Pollaczek-like polynomials.

PACS numbers: 02.30.Gp, 02.30.Hq, 03.65.Nk

1. Introduction

The Gaussian hypergeometric function 2F1 (a, b, c; z) has been studied extensively from its
mathematical point of view [1]. This is probably, in part, due to its many applications on a large
variety of physical and mathematical problems. In quantum mechanics, the solution of the
Schrödinger equation for some systems is expressed in terms of 2F1 functions, as for example
when solving the Pöschl-Teller, Wood-Saxon or Hulthén potentials [2]. Another very important
case is related to the angular momentum theory, since the eigenfunctions of the angular
momentum operators are written in terms of 2F1 functions [3]. These eigenfunctions depend
parametrically on the angular momentum quantum number l, and its analytical extension to
the complex plane of l is often necessary [4–7]. Generally, the physical parameters (like l
or the magnitude of the mentioned potentials) appear in one or several of the mathematical
parameters a, b or c. The dependence on the physical parameters is therefore related to the
study of the solutions as a function of a, b or c, rather than z. One important tool is then
provided by the derivatives of the 2F1 function with respect to these parameters since they
allow us, for example, to write a Taylor expansion around given values a0, b0 or c0.
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While the nth derivative with respect to the variable z has been expressed in a compact
form [1, 3], the same cannot be stated for the derivatives with respect to the parameters a, b

or c. Expressions for the first derivative with respect to a parameter have been presented
but only for some special values of the parameters (see Brychkov‘s very recent handbook
[8] and references therein). The formulations are relatively complicated and cannot be easily
generalized to derivatives of higher order. The main aim of this paper is to obtain compact forms
for the derivatives with respect to the parameters for the Gaussian hypergeometric function
2F1 (a, b, c; z) with any a, b, c, not only for the first but also for the nth derivative. The method
employed uses the second-order linear differential equation satisfied by the hypergeometric
function, and is similar to that presented in a recent publication [9] in which the derivatives
with respect to the parameters a and b of the confluent hypergeometric function 1F1 (a, b; z)

were investigated.
To illustrate the usefulness of the mathematical formulation in a physical situation, we have

considered the two-body Coulomb scattering wavefunction in spherical coordinates. A charge
Sturmian L2 representation leads to a family of Pollaczek-like orthogonal polynomials directly
related to Gaussian hypergeometric functions [10–12]. For this application, the physical
variable is the charge and appears in the first parameter of 2F1. The explicit expression of
these polynomials, as well as many of their properties, require the derivatives of a 2F1 function
with respect to the first parameter.

2. nth derivatives of the 2F1 hypergeometric functions with respect to the parameters

Consider the Gaussian hypergeometric function

F = 2F 1 (a, b, c; z) =
∞∑

n=0

(a)n (b)n

(c)n

zn

n!
, (1)

where the Pochhammer symbol (γ )n = �(γ + n)/�(γ ) is defined in terms of the Gamma
function [1]. In what follows, we shall use the following notation for the nth derivatives with
respect to the parameters a, b or c:

G(n)
a = dnF

dan
, G

(n)
b = dnF

dbn
, (2a)

H(n)
c = dnF

dcn
. (2b)

As a and b play a similar role, we shall study only the nth derivatives with respect to a and c
(those with respect to b may then be obtained by interchanging a and b).

Let us start with the first derivatives. Using the derivative of the Pochhammer symbol [3],
d(γ )n

dγ
= (γ )n[�(γ + n) − �(γ )], we find for G(1)

a

G(1)
a =

∞∑
n=0

(a)n (b)n

(c)n
[�(a + n) − �(a)]

zn

n!
. (3)

We have therefore an infinite series containing the Digamma function � (z) [3]. An alternative
formulation is obtained by using the recurrence formula (6.3.6) of [3]

G(1)
a =

∞∑
n=0

(a)n+1 (b)n+1

(c)n+1

zn+1

(n + 1)!

n∑
s=0

1

s + a
. (4)

Similar equations can be derived for H(1)
c .

2



J. Phys. A: Math. Theor. 42 (2009) 395208 L U Ancarani and G Gasaneo

It is clear that the generalization to the nth derivative, in either formulation, is particularly
cumbersome. To circumvent this difficulty we may consider the approach followed in [9],
which uses

1

(s + ai)
= 1

ai

(ai)s

(ai + 1)s
, (5)

and the rearrangement series technique (see, for example, chapter 2 of [13])
∞∑

n=0

n∑
k=0

B(k, n) =
∞∑

n=0

∞∑
k=0

B(k, n + k). (6)

With simple algebraic manipulations one finds, for example in the case of G(1)
a ,

G(1)
a = z

a

ab

c

∞∑
n=0

∞∑
s=0

(1)n(1)s (a)s

(2)n+s (a + 1)s

(a + 1)n+s (b + 1)n+s

(c + 1)n+s

zn+s

s!n!
. (7)

This double series can be related to the following hypergeometric function in two variables:

2�
(1)
1

(
a1, a2| b1, b2, b3

c1| d1, d2

∣∣∣∣ ; x1, x2

)
=

∞∑
m1=0

∞∑
m2=0

(a1)m1
(a2)m2

(b1)m1

(c1)m1

(b2)m1+m2
(b3)m1+m2

(d1)m1+m2
(d2)m1+m2

x
m1
1 x

m2
2

m1!m2!
, (8)

which, as we shall see, is a Kampé de Fériet-like function [14]. In terms of 2�
(1)
1 , the first

derivatives read

G(1)
a = d2F1

da
= z

a

ab

c
2�

(1)
1

(
1, 1| a, a + 1, b + 1

a + 1| 2, c + 1

∣∣∣∣ ; z, z

)
(9a)

H(1)
c = d2F1

dc
= −z

c

ab

c
2�

(1)
1

(
1, 1| c, a + 1, b + 1

c + 1| 2, c + 1

∣∣∣∣ ; z, z

)
. (9b)

The expression for G
(1)
b is obtained directly by interchanging a with b in (9a).

The generalization to the nth derivatives can be obtained in a similar way, but we found
that it is more convenient, as shown below, to use the second-order linear differential equation
satisfied by the hypergeometric function, i.e.,[

z(1 − z)
d2

dz2
+ (c − (a + b + 1)z)

d

dz
− ab

]
F = 0, (10)

where F = 2F1(a, b, c; z) is an analytical function of z ∈ C − {0, 1,∞}, and a, b, c can
be real or complex parameters. Since F is an analytical function of the variable z and of the
parameters a, b, c, we may take the derivative of (10) with respect to the parameters[

z (1 − z)
d2

dz2
+ (c − (a + b + 1) z)

d

dz
− ab

]
G(1)

a = z
dF

dz
+ bF (11a)[

z (1 − z)
d2

dz2
+ (c − (a + b + 1) z)

d

dz
− ab

]
H(1)

c = −dF

dz
. (11b)

Using the derivative with respect to z, dF
dz

= ab
c 2F 1(a+1, b+1, c+1; z), and several contiguous

relations for F, it can be easily shown that

z
dF

dz
+ bF = b 2F 1(a, b + 1, c; z)

3



J. Phys. A: Math. Theor. 42 (2009) 395208 L U Ancarani and G Gasaneo

so that the right-hand sides of the differential equations (11a) and ( 11b) are power series of
z. We may therefore use the solution of the following non-homogeneous differential equation
(equation (6.184) of Babister [15])[

z (1 − z)
d2

dz2
+ (c − (a + b + 1) z)

d

dz
− ab

]
y = zm1 (12)

given by equation (6.185) [15]

y = θm1+1 = zm1+1

(m1 + 1) (m1 + c)
3F 2 (1,m1 + a + 1,m1 + b + 1;m1 + 2,m1 + c + 1; z)

= (1)m1

(2)m1

(c)m1

(c + 1)m1
(c)1

zm1+1
3F 2 (1,m1 + a + 1,m1 + b + 1;m1 + 2,m1 + c + 1; z) , (13)

where the series converges for |z| < 1, and for |z| = 1 as long as Re(c − a − b) > 0. Since
the differential equations (11a) and (11b) are linear, the solutions for G(1)

a and H(1)
c can be

easily found. For example, for G(1)
a , we have

G(1)
a = b

∞∑
m1=0

(a)m1
(b + 1)m1

(c)m1

θm1+1

m1!

= b

c
z

∞∑
m1=0

(a)m1
(b + 1)m1

(c + 1)m1

(1)m1

(2)m1

zm1

m1!

× 3F2 (1,m1 + a + 1,m1 + b + 1;m1 + 2,m1 + c + 1; z) . (14)

Replacing 3F2 by its power series definition we find

G(1)
a = b

c
z

∞∑
m1=0

(a)m1
(b + 1)m1

(c + 1)m1

(1)m1

(2)m1

zm1

m1!

×
∞∑

m2=0

(1)m2
(a + 1 + m1)m2

(b + 1 + m1)m2

(2 + m1)m2
(c + 1 + m1)m2

zm2

m2!
. (15)

Using the identity (γ )m+n = (γ )m (γ + m)n and simplifying, we find for G(1)
a the result given

by equation (7). The procedure is similar for H(1)
c , resulting finally in the compact form given

by (9b).
Let us now turn to the derivatives of order n, starting from the second derivative.

Differentiating equations (11a) and (11b) with respect to a or c, respectively, we find the
following differential equations for G(2)

a and H(2)
c :

[
z (1 − z)

d2

dz2
+ (c − (a + b + 1) z)

d

dz
− ab

]
G(2)

a = 2

(
z

dG(1)
a

dz
+ bG(1)

a

)
= 2bG(1)

a (a, b + 1, c; z), (16a)[
z (1 − z)

d2

dz2
+ (c − (a + b + 1) z)

d

dz
− ab

]
H(2)

c = −2
dH(1)

c

dz
. (16b)

The generalization to order n is straightforward

[
z (1 − z)

d2

dz2
+ (c − (a + b + 1) z)

d

dz
− ab

]
G(n)

a = n

(
z

dG(n−1)
a

dz
+ bG(n−1)

a

)
= nbG(n−1)

a (a, b + 1, c; z), (17a)
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z (1 − z)

d2

dz2
+ (c − (a + b + 1) z)

d

dz
− ab

]
H(n)

c = −n
dH(n−1)

c

dz
. (17b)

Since the right-hand sides of these differential equations are again power series in z, we may
proceed as done for the first derivatives. For example, for G(2)

a we find

G(2)
a = (b)2

(c)2
z2

∞∑
m1=0

∞∑
m2=0

∞∑
m3=0

(1)m1
(1)m2

(1)m3

(a)m1
(a + 1)m1+m2

(a + 2)m1+m2+m3

(a + 1)m1

× (b + 2)m1+m2+m3

(a + 2)m1+m2
(3)m1+m2+m3

(c + 2)m1+m2+m3

zm1+m2+m3

m1!m2!m3!
. (18)

Similarly to the case of the first derivatives, it is convenient to introduce a hypergeometric in
n + 1 variables

2�
(n)
1

(
a1, a2, . . . , an+1| b1, b2, . . . , bn+2

c1, . . . , cn| d1, d2

∣∣∣∣ ; x1, . . . , xn+1

)
=

∞∑
m1=0

. . .

∞∑
mn+1=0

(a1)m1
(a2)m2

· · · (an+1)mn+1

(b1)m1
(b2)m1+m2

. . . (bn+1)m1+m2+···+mn+1

(c1)m1
(c2)m1+m2

· · · (cn)m1+m2+···+mn

× (bn+2)m1+m2+···+mn+1

(d1)m1+m2+···+mn+1
(d2)m1+m2+···+mn+1

x
m1
1 x

m2
2 · · · xmn+1

n+1

m1!m2! · · · mn+1!
. (19)

In terms of these new functions the nth derivatives read

G(n)
a = (b)n

(c)n
zn

2�
(n)
1

(
1, 1, . . . , 1| a, a + 1, . . . , a + n, b + n

a + 1, . . . , a + n| n + 1, c + n

∣∣∣∣ ; z, . . . , z

)
(20a)

H(n)
c = (−1)n

n!

cn

ab

c
z2�

(n)
1

(
1, 1, . . . , 1| c, c, . . . , c, a + 1, b + 1

c + 1, . . . , c + 1| 2, c + 1

∣∣∣∣ ; z, . . . , z

)
. (20b)

3. Properties of the function 2Θ
(1)
1

3.1. Connection with multivariable hypergeometric functions

The function 2�
(1)
1 , defined by equation (19), results from the application of the rule used by

Appell and Kampé de Fériet [14] to the product of the generalized confluent hypergeometric
functions 4F3 and 3F2

4F3

(
a1, a2, a3, a4

c1, c2, c3

∣∣∣∣ ; x1

)
× 3F 2

(
b1, b2, b3

d1, d2

∣∣∣∣ ; x2

)
=

∞∑
m1=0

∞∑
m2=0

(a1)m1
(a2)m1

(a3)m1
(a4)m1

(c1)m1
(c2)m1

(c3)m1

(b1)m2
(b2)m2

(b3)m2

(d1)m2
(d2)m2

x
m1
1

m1!

x
m2
2

m2!
.

Indeed, replacing the pairs of products as

(a3)m1
(b2)m2

→ (b2)m1+m2

(a4)m1
(b3)m2

→ (b3)m1+m2

(c2)m1
(d1)m2

→ (d1)m1+m2

(c3)m1
(d2)m2

→ (d2)m1+m2

5
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we obtain the expression
∞∑

m1=0

∞∑
m2=0

(a1)m1
(b1)m2

(a2)m1

(c1)m1

(b2)m1+m2
(b3)m1+m2

(d1)m1+m2
(d2)m1+m2

x
m1
1

m1!

x
m2
2

m2!
.

The fact that 2�
(1)
1 is generated by the product of two hypergeometric pFq functions

with p = q + 1 [13] which converge absolutely in the unit disc, ensures that the 2�
(1)
1

function converges in the same region. Similarly, we may apply Appell’s method to 2�
(2)
1 ,

through the product of 5F4, 4F3 and 3F2. Generalizing this procedure by using the product
n+3Fn+2,n+2 Fn+1, . . . , 4F3 and 3F2 we get the expression for 2�

(n)
1 given by (19), which are

Kampé de Fériet functions in n + 1 variables.

3.2. Recurrence relations

Starting from the recurrence relations for the confluent hypergeometric function F, recurrence
relations for the 2�

(1)
1 function can be easily deduced. For example, consider the contiguous

relation (15.2.20) of [3]

c (1 − z) 2F1(a, b, c; z) − c 2F1(a − 1, b, c; z) + (c − b)z 2F1(a, b, c + 1; z) = 0.

Derivating n times with respect to a, we get the following relation:

c (1 − z)G(n)
a (a, b, c; z) − cG(n)

a (a − 1, b, c; z) + (c − b)zG(n)
a (a, b, c + 1; z) = 0.

The replacement of G(n)
a by 2�

(n)
1 through equation (20a), provides a recurrence relation

between 2�
(n)
1 functions. In the n = 1 case, for example,

(1 − z) 2�
(1)
1

(
1, 1| a, a + 1, b + 1

a + 1| 2, c + 1

∣∣∣∣ ; z, z

)
− 2�

(1)
1

(
1, 1| a − 1, a, b + 1

a| 2, c + 1

∣∣∣∣ ; z, z

)
+ z

c − b

c + 1
2�

(1)
1

(
1, 1| a, a + 1, b + 1

a + 1| 2, c + 2

∣∣∣∣ ; z, z

)
= 0. (21)

3.3. Special values a = 0 or b = 0

It is easy to see, from the series definition (19), that for the special values a = 0 (and similarly
for b = 0), the 2�

(n)
1 function which appears for the nth derivative G(n)

a (equation (20a))
reduces to a 2�

(n−1)
1 function.

Another special case arises when either a or b is a negative integer −p , since the Gaussian
function reduces then to a polynomial of degree p. As a consequence, in the nth derivatives,
one of the n+1 infinite series terminates. An important case corresponds to Jacobi polynomials
[16].

3.4. Series representation in terms of one variable hypergeometric functions

From definition (8) of the 2�
(1)
1 function, we provide the following series representations:

2�
(1)
1

(
a1, a2| b1, b2, b3

c1| d1, d2

∣∣∣∣ ; x1, x2

)
=

∞∑
m1=0

(a1)m1
(b1)m1

(b2)m1
(b3)m1

(c1)m1
(d1)m1

(d2)m1

x
m1
1

m1!

× 3F 2 (a2, b2 + m1, b3 + m1; d1 + m1, d2 + m1; x2) (22)

=
∞∑

m2=0

(a2)m2
(b2)m2

(b3)m2

(d1)m2
(d2)m2

x
m2
2

m2!
4F 3 (a1, b1, b2 + m2, b3 + m3; c1, d1 + m2, d2 + m2; x1) .

(23)

6
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Similar representations can be easily written for the more general 2�
(n)
1 hypergeometric

functions.

4. Application: Pollaczek-like polynomials

The two-body Coulomb problem is of fundamental importance in atomic physics, not only
because it is one of the few problems that can be solved in closed form, but also for its
application to the many-body problems. Very important methods to deal with collisional
reactions use L2 representations of the continuum Coulomb wavefunction. An example of
that is the J-matrix method where a Sturmian representation of the Coulomb function is
used [10]. In this section, we establish the connection between this representation and the
derivatives of the Gaussian function studied in the previous sections.

Consider the two-body Coulomb problem, corresponding to a potential Z/r , a reduced
mass μ and an energy E = k2/(2μ). In spherical coordinates (r, θ, φ), the solution reads [17]

� (r) = Rl,k (r) Ym
l (θ, φ) ,

where Rl,k (r) and Ym
l (θ, φ) represent, respectively, the radial and angular parts of the

wavefunction. The angular part is represented by the spherical harmonics Ym
l (θ, φ) and

depend on the angular quantum numbers l and m. Defining the Sommerfeld parameter
α = Zμ√

2E
, the radial part is given in terms of the Kummer hypergeometric function

Rl,k (r) = Nl,k (2kr)l eikr
1F1 (l + 1 − iα, 2l + 2,−2ikr) , (24)

with the normalization constant

Nl,k =
(

2

πk

)1/2 |�(l + 1 − iα)|
�(2l + 2)

eπα/2. (25)

The L2 representation used by the J-matrix method is obtained by projecting the functions
Rl,k (r) in terms of Laguerre-type Coulomb–Sturmian functions

φl,n (r) = (λr)l e−λr/2L2l+1
n (λr) , (26)

which depend on a parameter λ that can be either real or complex. In the following expansion
[11, 18],

Rl,k = Nl,k

∞∑
n=0

n!

� (n + 2l + 2)
pl+1

n (x, α)φl,n (r) (27)

the coefficients pl+1
n (x, α) can be expressed in terms of Gaussian hypergeometric functions

for any real or complex value of the energy E. In particular, for positive energies E, they read

pl+1
n (x, α) = � (n + 2l + 2)

n!� (2l + 2)
einθ

2F 1 (l + 1 − iα,−n, 2l + 2; z) , (28)

where x = cos θ = E−λ2/2μ

E+λ2/2μ
and z = 1 − e−2iθ . As can be seen from this expression, the

energy E appears in the exponential prefactor, and twice in the Gaussian function (through the
argument z and in the first parameter, through α). The charge Z, on the other hand, is only
present in the first parameter of the Gaussian function, through α. The coefficients pl+1

n (x, α)

possess very interesting properties from the physical point of view. When using expansion
(27), all physical properties of the Coulomb wavefunction are transferred to pl+1

n (x, α), since
the functions φl,n (r) do not depend on either the charge Z or the energy E. For example, in the
complex plane of the energy E, the position of the bound states and the poles of the scattering
matrix can be related to each coefficient pl+1

n (x, α), as illustrated for example in [19]. The

7
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functions pl+1
n (x, α) are also very interesting from the mathematical point of view. Indeed,

the expansion of pl+1
n (x, α) in powers (i) of the energy yields coefficients which are Pollaczek

polynomials of degree n [18] and (ii) of the charge gives also polynomials, which are different
from those defined by Pollaczek, but may be named Pollaczek-like [11, 12]. Both sets of
polynomials have different generating functions, orthogonal and completeness relations, etc.
A study of all these properties is object of our current investigations.

No analytic expression has been given for any of the mentioned polynomials in terms of
either energy or charge. This is probably due to the presence of these variables also in the
parameters of the Gaussian function. In what follows, we shall give a general and analytic
expression for the coefficients considering the charge as variable. The polynomials in terms
of the energy can be obtained following a similar procedure.

As explained above, the Z dependence in pl+1
n (x, α) appears, through α, only in the first

parameter of the Gaussian function. A power series in α (and consequently in Z) can be
derived through the Taylor series

2F 1 (a,−n, 2l + 2; z) =
∞∑

m=0

(−iα)m

m!

dm
2F1 (a,−n, 2l + 2; z)

dam

∣∣∣∣
a=l+1

(29)

where a = l + 1 − iα. We therefore need expressions for G(n)
a , evaluated at a = l + 1, which

can be easily obtained form the expressions given in section 2. The first three functions read

G(0)
a

∣∣
a=l+1 = 2F 1 (l + 1,−n, 2l + 2; z) , (30a)

G(1)
a

∣∣
a=l+1 = (−n)1

(2l + 2)1
z 2�

(1)
1

(
1, 1| l + 1, l + 2, 1 − n

l + 2| 2, 2l + 3

∣∣∣∣ ; z, z

)
, (30b)

G(2)
a

∣∣
a=l+1 = (−n)2

(2l + 2)2
z2

2�
(2)
1

(
1, 1, 1| l + 1, l + 2, l + 3, 2 − n

l + 2, l + 3| 3, 2l + 4

∣∣∣∣ ; z, z, z

)
, (30c)

and the mth coefficient

G(m)
a |a=l+1 = (−n)m

(2l + 2)m
zm

× 2�
(m)
1

(
1, 1, . . . , 1| l + 1, l + 2, . . . , l + 1 + m,m − n

l + 2, . . . , l + 1 + m|m + 1, 2l + 2 + m

∣∣∣∣ ; z, . . . , z

)
. (31)

The factor (−n)m appearing in this expression indicates that the series (29) terminates after n
terms. The polynomials pl+1

n (x, α) given by (28) may thus be written as

pl+1
n (x, α) = (2l + 2)n

n!
(1 − z)−

n
2

n∑
m=0

(−iα)m

m!
G(m)

a

∣∣
a=l+1 , (32)

where the relation eiθ = 1√
1−z

was used. Besides, as discussed in section 3.3, the functions

2�
(m)
1 reduce to polynomials because one of the parameters is a negative integer. The first

three pl+1
n (x, α) are

pl+1
0 (x, α) = 1,

pl+1
1 (x, α) = (2l + 2) (1 − z)−

1
2

[
1 − z

2
− (−iα)

z

2l + 2

]
pl+1

2 (x, α) = (2l + 2)2

2!
(1 − z)−1

{[
1 − z +

(l + 2) z2

2 (2l + 3)

]
− (−iα)

[
1

l + 1
z
(

1 − z

2

)]
+

(−iα)2

2!

[
2

(2l + 2)2
z2

]}
.
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These simple expressions were derived from the reductions to polynomials of 2F1 with a
negative integer as parameter, and from the result

2�
(1)
1

(
1, 1| l + 1, l + 2,−1

l + 2| 2, 2l + 3

∣∣∣∣ ; z, z

)
= 1 − z

2
which can be deduced from its definition or with the help of the series (22). Following similar
procedures expression for further pl+1

n (x, α) can be derived.
From the two expansions (27) and (32), the Coulomb wavefunction can be written as the

following double series:

Rl,k = Nl,k

∞∑
n=0

n∑
m=0

Zm

m!
gl,m,n (z) φl,n (r) , (33)

where

gl,m,n (z) = (−i)m

� (2l + 2)

(
μ√
2E

)m

(1 − z)−
n
2 G(m)

a

∣∣
a=l+1. (34)

Except for the normalization factor Nl,k , in this formulation the dependence on the charge, the
energy and the radial coordinate are fully separated. Using relation (6), we may transform the
sum over m into an infinite sum, to finally get

Rl,k = Nl,k

∞∑
m=0

Zm

m!

[ ∞∑
n=0

g̃l,m,n (z) φl,n+m (r)

]
, (35)

where

g̃l,m,n (z) = (−i)m

� (2l + 2)

(
μ√

2E
√

1 − z

)m

(1 − z)−
n
2 G(m)

a

∣∣
a=l+1 . (36)

In this formulation, the sum over m corresponds to the power series expansion of the charge
Z of the Kummer function of equation (24); the result is equivalent to that presented in our
previous paper [9] but expressed here in spherical coordinates. Combining this power series
expansion with that of the normalization constant Nl,k , the Born series for the radial Coulomb
wavefunction can be easily derived [9]. With the result (35), we are not only giving all orders
of the power series of the Kummer function but also its L2 representation in terms of Sturmian
functions.

5. Conclusions

We have studied the derivatives to any order of the Gaussian hypergeometric function
2F1 (a, b, c; z) with respect to the parameters a, b and c. We have shown that they can
be expressed in terms of generalizations of multivariable Kampé de Fériet functions, noted
2�

(n)
1 , for which several properties were established.

The usefulness of these derivatives has been illustrated through a physical application: the
two-body Coulomb scattering problem. In a L2 representation of the Coulomb wavefunction
using Sturmian functions, we have been able to express explicitly the charge dependence
of the corresponding charge polynomials. Besides this application, the mathematical results
presented here might be useful in a wide range of physical and mathematical problems since the
Gaussian function is the one-variable hypergeometric function which appears most frequently.
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